MULTI-RATE 10-GIGABIT CWDM 40KM XFP TRANSCEIVERS WITH DIGITAL DIAGNOSTICS

TXC3XGHI2x

Product Description

The TXC3XGHI2x CWDM XFP multi-rate fiber optic transceivers with digital diagnostics monitoring functionality provide a quick and reliable interface for 10Gbps CWDM applications. The diagnostic functions, alarm and warning features as described in the XFP Multi-Source Agreement (MSA) are provided via standard I²C serial interface. The transceivers are designed to support the XFP Multi-Source Agreement, and multiple data rates from 9.95Gb/s to 11.09Gb/s for OC-192, 10G Ethernet, 10G Fiber Channel and FEC applications.

Each transceiver utilizes an electro-absorption modulated laser with an operating wavelength selectable to ITU-T standards covering CWDM grid wavelengths. They satisfy Class I Laser Safety requirements in accordance with the U.S. FDA/CDRH and international IEC-60825 standards.

The transceivers connect to standard 30-pad XFP connectors for hot plug capability. This allows the system designer to make configuration changes or maintenance by simply plugging in different types of transceivers without removing the power supply from the host system.

The transmitter and receiver DATA interfaces are AC coupled Current Mode Logic (CML). LV-TTL Transmitter Disable control input and Loss of Signal output interfaces are also provided.

The transceivers operate from +3.3V and +5.0V power supplies over a operating case temperature range of -5°C to $+70^{\circ}\text{C}$ (Commercial), -5°C to $+85^{\circ}\text{C}$ (Extended), or -40°C to $+85^{\circ}\text{C}$ (Industrial). The housing is made of metal for EMI immunity.

Features

- ☑ Lead Free Design & Fully RoHS Compliant
- ☑ Compliant with XFP MSA
- ☑ Compliant with OC-192/STM-64
- ☑ Compliant with ITU-T G.709
- ✓ Support 10G Ethernet Applications
- ☑ Support 10G Fiber Channel Applications
- ☑ Compatible with ITU-T G.695
- ☑ Digital Diagnostics Monitoring
- ☑ Temperature-stabilized EML Transmitter
- ☑ Low Power Consumption
- ☑ Wide Case Operating Temperature Range
- ☑ Distance up to 40km with G.652 Fiber

Absolute Maximum Ratings

Parameter		Symbol	Minimum	Maximum	Units	
Storage Temperature Range		$T_{\scriptscriptstyle ST}$	- 40	+ 85	°C	
	Commercial		- 5	+ 70	°C	
Case Operating Temperature ¹	Extended	T_{OP}	- 5	+ 85		
	Industrial		- 40	+ 85		
Supply Voltage		$V_{cc}3$	- 0.2	+ 3.6	V	
		$V_{cc}5$	- 0.2	+ 6.0] V	
Operating Relative Humidity ²		RH	0	85	%	
Input Voltage		$V_{\scriptscriptstyle IN}$	0	V_{cc}	V	

¹ Case temperature is measured on top side of XFP module.

² Non condensing

Transmitter Performance Characteristics (Over Operating Case Temperature Range)

Paran	Symbol	Minimum	Typical	Maximum	Units	
Operating Data Rate		В	9.95	-	11.09	Gb/s
Average Optical Output Po	wer (50% duty cycle)	$P_{\scriptscriptstyle O}$	- 1.0	-	+ 3.0	dBm
Transmitter OFF Power		P_{OFF}	-	-	- 45.0	dBm
Extinction Ratio @ 9.95Gb/s to 10.7Gb/s		ER	8.2	-	-	dB
Center Wavelength 1		λ_{c}	See C	nm		
Spectral Width		$\Delta\lambda_{20}$	-	-	1.0	nm
Side Mode Suppression Ratio		SMSR	30	-	-	dB
Relative Intensity Noise		RIN	-	-	- 130	dB/Hz
Reflectance Tolerance		$ref_{_T}$	-	-	- 27	dB
liste Comment of 2	20 kHz – 80 MHz	JG_{20K}	-	-	0.3	UI _{pp}
Jitter Generation ²	4 MHz – 80 MHz	$JG_{_{4M}}$	-	-	0.1	UI _{pp}
Dispersion Penalty		DP	-	-	2.5	dB
Optical Output Eye		Compliant with GR253-CORE, IEEE 803.3ae , and ITU-T G.959				

¹ Maximum wavelength deviation: +/-6.5nm

Receiver Performance Characteristics (Over Operating Case Temperature Range)

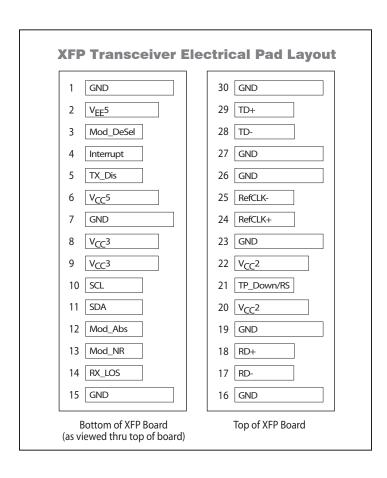
Parameter		Symbol	Minimum	Typical	Maximum	Units	
Operating Data Rate		В	9.95	-	11.09	Gb/s	
Wavelength of Operation	า	λ	1450	-	1620	nm	
Receiver Sensitivity	@ 9.95Gb/s (10 ⁻¹² BER)	P_{min}	-	-	- 16.0	dBm	
(1471~1551nm)	@ 11.09Gb/s (10 ⁻⁴ BER)	Pmin	-	-	- 19.0		
Receiver Sensitivity	@ 9.95Gb/s (10 ⁻¹² BER)	Pmin	-	-	- 14.0	dBm	
(1571~1611nm)	@ 11.09Gb/s (10 ⁻⁴ BER)	I min	-	-	- 17.0		
Maximum Input Power (*	Maximum Input Power (10 ⁻¹² BER)		+ 0.5	-	-	dBm	
LOS Thresholds	Increasing Light Input	P_{los+}	-	-	- 19.0	dBm	
LO3 ITITESTICIUS	Decreasing Light Input	P_{los}	- 28.0	-	-	иын	
LOS Hysteresis		-	0.5	-	-	dB	
Receiver Reflectance		-	-	-	- 27	dB	

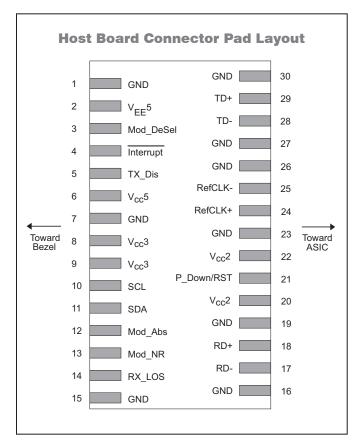
Laser Safety: All transceivers are Class 1 Laser products per FDA/CDRH and IEC-60825 standards. They must be operated under specified operating conditions.

Oplink Communications, Inc.

This product complies with 21 CFR 1040.10 and 1040.11

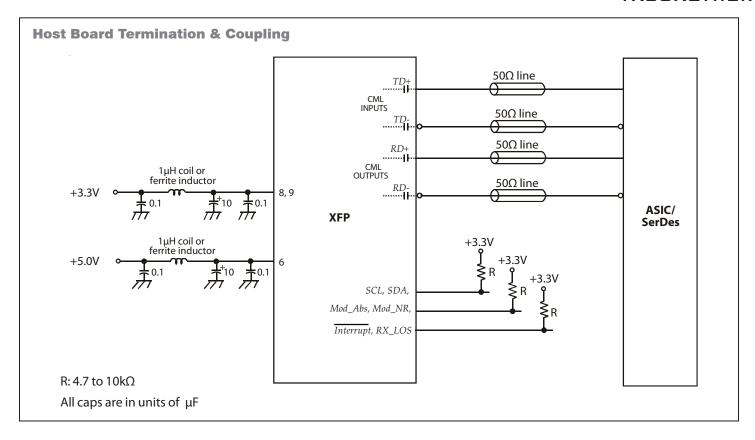
Meets Class I Laser Safety Requirements


² Jitter generation is compliant with GR-253 and G.8251.


Electrical Interface (Over Operating Case Temperature Range)

Parameter	Symbol	Minimum	Typical	Maximum	Units
Differential Impedance	Z_d	-	100	-	Ω
Differential Input Voltage Swing	$V_{pp, diff_in}$	120	-	820	mV
Differential Output Voltage Swing	V pp, diff_out	340	550	850	mV
Output Rise/Fall Time (20 to 80%)	T_r/T_f	24	-	-	ps
TV Dis D. Dourn/DST	$V_{_{I\!L}}$	- 0.3	-	0.8	V
TX_Dis, P_Down/RST	$V_{_{I\!H}}$	2.0	-	$V_{CC} + 0.3$	V
VED Intervient Mad ND DV LOC	$V_{\scriptscriptstyle OL}$	0	-	0.4	V
XFP Interrupt, Mod_NR, RX_LOS	V_{OH}	host_V _{CC} - 0.5	-	$host_{-}V_{CC} + 0.3$	V

Electrical Power Supply Characteristics (Over Operating Case Temperature Range)


Parameter	Symbol	Minimum	Typical	Maximum	Units	
Davier Complet Voltage	$V_{cc}3$	3.13	3.3	3.47	V	
Power Supply Voltage	$V_{cc}5$	4.75	5.0	5.25	V	
Consulta Communit	$I_{cc}3$	-	-	750	mA	
Supply Current	$I_{cc}5$	-	-	500		
Power Dissipation	PW	-	2	3.5	W	
P_Down Power Dissipation	PDW	-	-	1.5	W	

Module Pin Description

Pin	Logic	Symbol	Description
1	-	GND	Module Ground
2	-	$V_{EE}5$	Optional -5.2V Power Supply (Not Required)
3	LVTTL-I	Mod_DeSel	Module De-select; When held low allows module to respond to 2-wire serial interface
4	LVTTL-O	Interrupt	Interrupt; Indicates presence of an important condition which can be read over the 2-wire serial Interface
5	LVTTL-I	TX_Dis	Transmitter Disable; Turns off transmitter laser output
6	-	$V_{cc}5$	+5V Power Supply
7	-	GND	Module Ground
8	-	$V_{cc}3$	+3.3V Power Supply
9	-	$V_{cc}3$	+3.3V Power Supply
10	LVTTL-I/O	SCL	2-Wire Serial Interface Clock
11	LVTTL-I/O	SDA	2-Wire Serial Interface Data Line
12	LVTTL-O	Mod_Abs	Indicates Module is not present. Grounded in the Module
13	LVTTL-O	Mod_NR	Module Not Ready; Indicating Module Operational Fault
14	LVTTL-O	RX_LOS	Receiver Loss Of Signal Indicator
15	-	GND	Module Ground
16	-	GND	Module Ground
17	CML-O	RD-	Receiver Inverted Data Output
18	CML-O	RD+	Receiver Non-Inverted Data Output
19	-	GND	Module Ground
20	-	$V_{cc}2$	Not Used
21	LVTTL-I	P_Down/RST	Power down; When high, requires the module to limit power consumption to 1.5W or below. 2-Wire serial interface must be functional in the low power mode.
21	LV I I L-I	1 _Down/R31	Reset; The falling edge initiates a complete reset of the module including the 2-wire serial interface, equivalent to a power cycle.
22	-	V_{cc} 2	Not Used
23	-	GND	Module Ground
24	PECL-I	RefCLK+	Reference Clock Non-Inverted Input (Not Required)
25	PECL-I	RefCLK-	Reference Clock Inverted Input (Not Required)
26	-	GND	Module Ground
27	-	GND	Module Ground
28	CML-I	TD-	Transmitter Inverted Data Input
29	CML-I	TD+	Transmitter Non-Inverted Data Input
30	-	GND	Module Ground

Application Notes

Electrical Interface: All signal interfaces are compliant with the XFP MSA specification. The high speed DATA interface is differential AC-coupled internally and can be directly connected to a 3.3V SERDES IC.

RX_LOS: The Loss of Signal circuit monitors the level of the incoming optical signal and generates a logic HIGH when an insufficient photocurrent is produced.

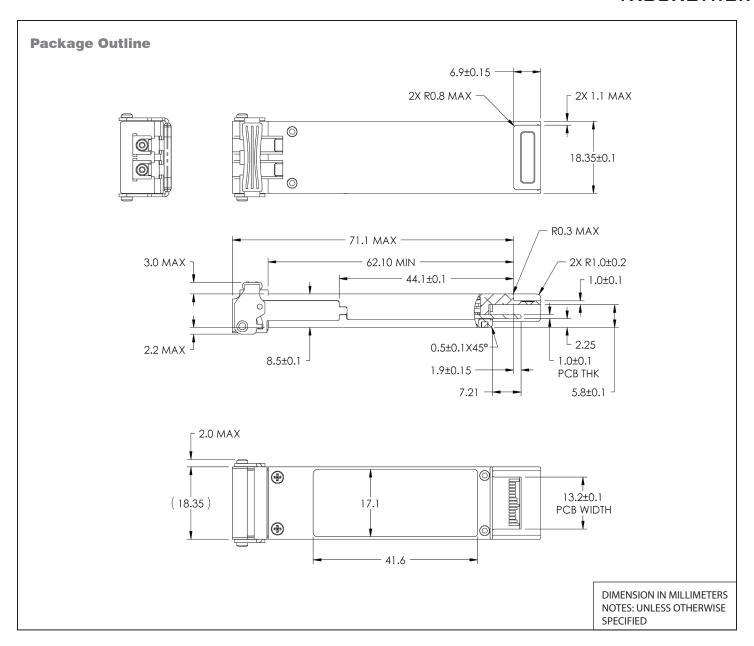
TX_Dis: When the TX Disable pin is at logic HIGH, the transmitter optical output is disabled. (less than -45dBm).

P_Down: The Power Down Function pin, when held High by the host, places the module in the standby (Low Power) mode with a maximum power dissipation of 1.5W. This protects hosts which are not capable of cooling higher power modules which may be accidentally inserted. The module's 2-wire serial interface and all laser safety functions must be fully functional in this low power mode. During P_Down, the module shall still support the completion of reset Interrupt, as well as maintain functionality of the variable power supply.

Mod_NR: The Mod_NR is an output pin that when High, indicates that the module has detected a condition that renders transmitter and or receiver data invalid, shall consist of logical OR of the following signals:

- Transmit Signal Conditioner Loss of Lock
- Transmitter Laser Fault
- Receiver Signal Conditioner Loss of Lock

Other conditions deemed valuable to the detection of fault may


be added to the Mod_NR. The Mod_NR output pin is an open collector and must be pulled to Host_Vcc on the host board.

P_Down/RST: The negative edge of Reset Function signal initiates a complete module reset.

Module Behavior During P_Down and RST: During execution of a reset (t_init) or while held in Power Down mode, a module may be unable to determine the correct value for Mod_NR and RX_LOS. These outputs as well as all interrupt related flags, except completion of Reset flag, shall be disregarded by the host. When the module completes a Reset and is not in Power Down mode, the module must represent the correct value of both signals on its outputs before posting a completion of reset interrupt to the host.

At no time shall a module cause spurious assertion of the Interrupt pin. When a host initially applies power to a module with the P_Down/RST signal asserted, a module comes up in power down mode. The module shall only assert the Interrupt signal pin to inform the host it has completed a reset. The completion of reset flag shall be the only interrupt source flag set during power down mode. The host is expected to clear this interrupt before releasing the module from the power down mode. The transition from power down mode to normal mode will trigger a reset of the module and result in a 2nd module reset and a 2nd reset completion interrupt to the host.

Power Supply and Grounding: The power supply line should be well-filtered. All $0.1\mu F$ power supply bypass capacitors should be as close to the transceiver module as possible.

Ordering Information

Oplink Part Number	Operating Te	Operating Temperature		Distance	Latch Color	
TXC3XGHI2C00010G	- 5°C to +70°C	Commercial	1471nm	40km	Red	
TXC3XGHI2C00020G	- 5°C to +70°C	Commercial	1491nm	40km	Red	
TXC3XGHI2C00030G	- 5°C to +70°C	Commercial	1511nm	40km	Red	
TXC3XGHI2C00040G	- 5°C to +70°C	Commercial	1531nm	40km	Red	
TXC3XGHI2C00050G	- 5°C to +70°C	Commercial	1551nm	40km	Red	
TXC3XGHI2C00060G	- 5°C to +70°C	Commercial	1571nm	40km	Red	
TXC3XGHI2C00070G	- 5°C to +70°C	Commercial	1591nm	40km	Red	
TXC3XGHI2C00080G	- 5°C to +70°C	Commercial	1611nm	40km	Red	
TXC3XGHI2E00010G	- 5°C to +85°C	Extended	1471nm	40km	Red	
TXC3XGHI2E00020G	- 5°C to +85°C	Extended	1491nm	40km	Red	
TXC3XGHI2E00030G	- 5°C to +85°C	Extended	1511nm	40km	Red	
TXC3XGHI2E00040G	- 5°C to +85°C	Extended	1531nm	40km	Red	
TXC3XGHI2E00050G	- 5°C to +85°C	Extended	1551nm	40km	Red	
TXC3XGHI2E00060G	- 5°C to +85°C	Extended	1571nm	40km	Red	
TXC3XGHI2E00070G	- 5°C to +85°C	Extended	1591nm	40km	Red	
TXC3XGHI2E00080G	- 5°C to +85°C	Extended	1611nm	40km	Red	
TXC3XGHI2I00010G	- 40°C to +85°C	Industrial	1471nm	40km	Red	
TXC3XGHI2I00020G	- 40°C to +85°C	Industrial	1491nm	40km	Red	
TXC3XGHI2I00030G	- 40°C to +85°C	Industrial	1511nm	40km	Red	
TXC3XGHI2I00040G	- 40°C to +85°C	Industrial	1531nm	40km	Red	
TXC3XGHI2I00050G	- 40°C to +85°C	Industrial	1551nm	40km	Red	
TXC3XGHI2I00060G	- 40°C to +85°C	Industrial	1571nm	40km	Red	
TXC3XGHI2I00070G	- 40°C to +85°C	Industrial	1591nm	40km	Red	
TXC3XGHI2I00080G	- 40°C to +85°C	Industrial	1611nm	40km	Red	